Krasorion.ru

Упаковочные материалы

Многочлен тейлора лотнера, многочлен тейлора и формула тейлора, многочлен тейлора для функции

Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций.

Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора — его использовали ещё в XVII веке Грегори, а также Ньютон.

Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Содержание

Определение

Пусть функция бесконечно дифференцируема в некоторой окрестности точки . Формальный ряд

называется рядом Тейлора функции в точке .

Связанные определения

  • В случае, если , этот ряд также называется рядом Макло́рена.

Свойства

  • Если есть аналитическая функция в любой точке a, то её ряд Тейлора в любой точке области определения сходится к в некоторой окрестности .
  • Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности . Например, Коши предложил такой пример:
    f(x)=
\left\{
\begin{matrix}
0,&\ \ x=0\\
e^{-\frac{1}{x^2}} &\ \ x\not=0
\end{matrix}
\right.,\ \  a=0.

У этой функции все производные в нуле равны нулю, поэтому коэффициенты ряда Тейлора в точке равны нулю.

Формула Тейлора

Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении. Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.

Теорема:

тогда: точка при или при :


Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).

Различные формы остаточного члена

В форме Лагранжа:

В форме Коши:

В интегральной форме:

Ослабим предположения:

  • Пусть функция имеет производную в некоторой окрестности точки
  • И производную в самой точке , тогда:
 — остаточный член в асимптотической форме (в форме Пеано, в локальной форме)

Ряды Маклорена некоторых функций

Формула Тейлора для функции двух переменных

Пусть функция имеет полные производные вплоть до -го порядка включительно в некоторой окрестности точки . Введём дифференциальный оператор

.

Тогда разложением в ряд Тейлора функции по степеням и в окрестности точки будет

где  — остаточный член в форме Лагранжа:

В случае функции одной переменной , поскольку для функции одной переменной частная производная тождественно равна полной. Аналогично формула распространяется на функции от любого числа переменных, меняется только число слагаемых в операторе .

См. также

Литература

  • Ильин В. А., Садовничий В. А., Сендов Б. Х. Математический анализ, ч. 1, изд. 3, ред. А. Н. Тихонов. М.: Проспект, 2004.
  • Киселёв В. Ю., Пяртли А. С., Калугина Т. Ф. Высшая математика. Первый семестр, Интерактивный компьютерный учебник.
  • Петрова С. С., Романовска Д. А. К истории открытия ряда Тэйлора. // Историко-математические исследования. — М.: Наука, 1980. — № 25. — С. 10-24.
  • Письменный Д. Т. Конспект лекций по высшей математике, изд.: АЙРИС-пресс, 2002.

Многочлен тейлора лотнера, многочлен тейлора и формула тейлора, многочлен тейлора для функции.

Файл:Portada Original de la Constitucion Mexicana de 1917.png, Категория:Списки проекта Музыка средней важности, Ferrari 275.

© 2011–2023 krasorion.ru, Россия, Братск, ул. Ленинская 34, +7 (3953) 38-98-93