Krasorion.ru

Упаковочные материалы

Трёхчлен

Многочлен (или полином) от n переменных — это конечная формальная сумма вида

,

где есть набор из целых неотрицательных чисел (называется мультииндекс),  — число (называемое «коэффициент многочлена»), зависящее только от мультииндекса I.

В частности, многочлен от одной переменной есть конечная формальная сумма вида

где фиксированные коэффициенты, а  — переменная.

С помощью многочлена выводятся понятия алгебраическое уравнение и алгебраическая функция.

Содержание

Изучение и применение

Изучение полиномиальных уравнений и их решений составляло едва ли не главный объект «классической алгебры». С изучением многочленов связан целый ряд преобразований в математике: введение в рассмотрение нуля, отрицательных, а затем и комплексных чисел, а также появление теории групп как раздела математики и выделение классов специальных функций в анализе.

Техническая простота вычислений, связанных с многочленами, по сравнению с более сложными классами функций, а также тот факт, что множество многочленов плотно в пространстве непрерывных функций на компактных подмножествах евклидова пространства (см. аппроксимационная теорема Вейерштрасса), способствовали развитию методов разложения в ряды и полиномиальной интерполяции в математическом анализе.

Многочлены также играют ключевую роль в алгебраической геометрии, объектом которой являются множества, определённые как решения систем многочленов. Особые свойства преобразования коэффициентов при умножении многочленов используются в алгебраической геометрии, алгебре, теории узлов и других разделах математики для кодирования, или выражения многочленами свойств различных объектов.

Связанные определения

  • Многочлен вида называется одночленом или мономом мультииндекса .
    • Одночлен, соответствующий мультииндексу называется свободным членом.
    • Полной степенью (ненулевого) одночлена называется целое число .
    • Множество мультииндексов I, для которых коэффициенты ненулевые, называется носителем многочлена, а его выпуклая оболочкамногогранником Ньютона.
  • Степенью многочлена называется максимальная из степеней его одночленов, тождественный нуль не имеет степени.
  • В случае, когда многочлен имеет всего два ненулевых члена, его называют двучленом или биномом,
  • В случае, когда многочлен имеет всего три ненулевых члена, его называют трёхчленом.
  • Коэффициенты многочлена обычно берутся из определённого коммутативного кольца (чаще всего поля, например, поля вещественных или комплексных чисел). В этом случае, относительно операций сложения и умножения многочлены образуют кольцо (более того ассоциативно-коммутативную алгебру над кольцом без делителей нуля) которое обозначается :

Полиномиальные функции

Пусть есть алгебра над кольцом . Произвольный многочлен определяет полиномиальную функцию

.

Чаще всего рассматривают случай .

В случае, если есть поле вещественных или комплексных чисел (а также любое другое поле с бесконечным числом элементов), функция полностью определяет многочлен p. Однако в общем случае это неверно, например: многочлены и из определяют тождественно равные функции .

Типы многочленов

  • Многочлен одной переменной называется унитарным или приведённым[en], если его старший коэффициент равен единице.
  • Многочлен, все одночлены которого имеют одну и ту же полную степень называется однородным.
    • Например — однородный многочлен двух переменных, а не является однородным.
  • Многочлен, который можно представить в виде произведения многочленов низших степеней с коэффициентами из данного поля, называется приводимым (над данным полем), в противном случае — неприводимым.

Свойства

Делимость

Неприводимые многочлены играют в кольце многочленов роль, сходную с ролью простых чисел в кольце целых чисел. Например, верна теорема: если произведение делится на неприводимый многочлен , то p или q делится на . Каждый многочлен, степени большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени).

Например, многочлен , неприводимый в поле рациональных чисел, разлагается на три множителя в поле вещественных чисел и на четыре множителя в поле комплексных чисел.

Вообще, каждый многочлен от одного переменного разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры).

Для двух и большего числа переменных этого уже нельзя утверждать. Над любым полем для любого существуют многочлены от переменных, неприводимые в любом расширении этого поля. Такие многочлены называются абсолютно неприводимыми.

Вариации и обобщения

См. также

Литература

  • Винберг Э. Б. Алгебра многочленов. — М.: Просвещение, 1980. — 176 с.
  • Солодовников А. С, Родина М. А. Задачник-практикум по алгебре. — М.: Просвещение, 1985. — 127 с.
  • В. В. Прасолов Многочлены. — МЦНМО, 2003. — 336 с. — ISBN 5-94057-077-1
  • Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре. — М., 1977.


Трёхчлен.

© 2011–2023 krasorion.ru, Россия, Братск, ул. Ленинская 34, +7 (3953) 38-98-93