Krasorion.ru

Упаковочные материалы

Оксимы

Син — анти (Z — E) изомерия оксима ацетофенона

Оксимы (или изонитрозосоединения) — органические соединения, включающие в себя одну или несколько изонитрозогрупп RR1C=N-OH. Обычно рассматриваются как производные альдегидов (R1 = H) - альдоксимы и кетонов - кетоксимы[1]. Для альдоксимов и оксимов несимметричных кетонов характерна цис — транс изомерия по связи C=N.

Содержание

Физические свойства

Оксимы обычно легкоплавкие твердые вещества, в чистом виде - белого цвета. Плохо растворяются в воде, хорошо в органических растворителях. Цис- и транс- изомеры различаются по физическим свойствам (темпертура плавления, спектры), взаимопревращение стереоизомеров происходит при действии кислот или облучении светом.

В ИК-области в спектрах оксимов наблюдаются слабые полосы валентных колебаний связей N–H при 3650-3500 см−1 и C=N при 1690-1650 см−1; валентные колебания N-O обуславливают сильную полосу поглощения при 960-930 см−1.

Методы синтеза

Наиболее распространенным лабораторным методом оксимов является реакции альдегидов и кетонов с гидроксиламином:

CH3COCH3 + NH2OH CH3(C=N-OH)CH3 + H2O

Другим широко используемым методом является изомеризация нитрозосоединений, содержащих водород в α-положении к нитрозогруппе:

Такая изомеризация проходит in situ при нитрозировании некоторых алканов (например, циклогексана нитрозилхлоридом NOCl) или соединений с активированной метильной либо метиленовой группой:

PhCOCH3 + C5H11ONO [ PhCOCH2N=O ] PhCOCH=N-OH

Оксимы также могут быть синтезированы окислением первичных аминов:

RR1CH-NH2 + H2O2 RR1C=NOH + H2O

либо восстановлением нитросоединений:

RCH2NO2 + [H] RCH=NOH + H2O

Реакционная способность

Диметилглиоксимат никеля.

Оксимы проявляют амфотерные свойства, являясь как очень слабыми основаниями, так и слабыми кислотами (pKa ~ 11, pKb ~ 12).

Оксимы под действием алкоголятов щелочных металлов оксимы депротонируются, образуя соответствующие соли, они также могут образовывать соли с переходными металлами, в последнем случае возможно комплексообразование, особенно в случае бидентантных оксимов. Так, например, диметилглиоксим (реактив Чугаева) образует с двухвалентным никелем прочный нерастворимый комплекс; эта реакция используется для гравиметрического определения никеля.

Оксимы являются амбидентантными нуклеофилами, способными алкилироваться и по атому кислорода, и по атому азота: так, соли оксимов с щелочными металлами алкилируются алкилгалогенидами с образованием O-алкилоксимов:

RR1C=NOH + C2H5ONa RR1C=NONa + C2H5OH
RR1C=NONa + R2I RR1C=NOR2 + NaI

Алкилирование может идти и по атому азота, в этом случае образуются нитроны, к образованию нитронов ведет также присоединение к оксимам присоединение α,β-ненасыщенных карбонильных соединений[2]:

Энергичными восстановителями оксимы восстанавливаются до аминов, также возможно восстановление до N-замещенных гидроксиламинов.

Оксимы дегидрируются с образованием иминоксильных радикалов:

R2C=NOH R2C=N-O.

Под действием перокситрифторуксусной кислоты, получаемой in situ из трифторуксусного ангидрида и перекиси водорода оксимы окисляются до нитросоединений; в случае циклогексаноноксима реакцию проводят в кипящем ацетонитриле в присутствии буфера, при окислении оксимов α-дикетонов в α-нитрокарбонильные соединения в качестве растворителя может быть использован хлороформ или трифторуксусная кислота, необходимости в буфере в этом случае нет, предполагается, что первоначально образуется аци-форма нитросоединения, которая затем таутомеризуется:

RCOCR=NOH + CF3COOOH RCOCR=NO(OH) RCOCHRNO2

N-бромсукцинимид (NBS) реагирует с оксимами с образованием соответствующего гем-бромнитрозопроизводного:

R2C=NOH + NBS R2CBr(NO)

Под действием азотной кислоты оксимы дают гем-нитронитрозосоединения:

R2C=NOH + HNO3 R2CNO(NO2)

Под действием кислотных и ацилирующих агентов (PCl5, P2O5, полифосфорные кислоты, хлорангидриды сульфокислот и карбоновых кислот) альдоксимы отщепляют воду с образованием нитрилов:

RCH=NOH + Ac2O RCN + 2 AcOH

Кетоксимы в таких условиях перегруппировываются в амиды (Перегруппировка Бекмана), перегруппировка стереоспецифична - к азоту мигрирует радикал, находящийся в транс-положении к гидроксилу:

RR1CH=NOH RCONHR1

Перегруппировка Бекмана циклогексаноноксима является промышленным методом синтеза капролактама - мономера капрона (найлона-6):

Перегруппировку Бекмана также претерпевают O-замещённые кетоксимы (сложные эфиры оксимов, перегруппировка Бекмана-Чепмена):

RR1CH=NOR2 RCONR1R2

α-Гидроксикетоксимы в условиях перегруппировки Бекмана расщепляются с образованием альдегида и нитрила (расщепление по Бекману или перегруппировка Вернера):

RCH(OH)CR1=NOH RCHO + R1CN + H2O

O-сульфонаты оксимов алифатических кетонов под действием оснований претерпевают перегруппировку, образуя азирины, гидролизующиеся далее до α-аминокетонов (перегруппировка Небера), эта реакция является синтетическим методом α-аминирования кетонов[3]:

Применение

Некоторые оксимы (аллоксим, диэтиксим, дипироксим, изонитрозин) являются реактиваторами холинэстеразы и используются в качестве антидотов при отравлениях фосфорорганическими инсектицидами.

Оксим циклогексанона является крупнотоннажным продуктом, используемым в производстве капролактама.

Диметилглиоксим используется в аналитической химии для обнаружения и количественного определения никеля («реактив Чугаева»), никелевый комплекс этого вещества (диметилглиоксимат никеля) используется в качестве красного пигмента.

Примечания

  1. oximes // IUPAC Gold Book
  2. A new synthetic access to N-alkylated nitrones through Lewis acid-catalyzed conjugate additions of aldoximes». Tetrahedron Letters 42 (38): 6719-6722. 16/S0040-4039(01)01346-6. 0040-4039. Проверено 2011-08-13.
  3. P. W. Neber, A. v. Friedolsheim: Über eine neue Art der Umlagerung von Oximen. In: Liebigs Ann. 1926, 449. 109–134.


Оксимы.

© 2011–2023 krasorion.ru, Россия, Братск, ул. Ленинская 34, +7 (3953) 38-98-93